Commodity Production Costs Report
PG Ethylene from Ethanol (Similar to Braskem Process)
Ethylene Operating Costs & Plant Construction Costs
This study presents the costs associated with Green Polymer Grade (PG) Ethylene production from ethanol in the United States using a process similar to the processes developed by Braskem and Petrobras. In this process, the reaction system is composed of multiple reactors and multiple furnaces.
The report provides a comprehensive study of Ethylene production and related Ethylene production cost, covering three key aspects: a complete description of the Ethylene production process examined; an in-depth analysis of the related Ethylene plant capital cost (Capex); and an evaluation of the respective Ethylene plant operating costs (Opex).
The Ethylene production process description includes a block flow diagram (BFD), an overview of the industrial site installations, detailing both the process unit and the necessary infrastructure, process consumption figures and comprehensive process flow diagrams (PFD). The Ethylene plant capital cost analysis breaks down the Capex by plant cost (i.e., ISBL, OSBL and Contingency); owner's cost; working capital; and costs incurred during industrial plant commissioning and start-up. The Ethylene plant operating costs analysis covers operating expenses, including variable costs like raw materials and utilities, and fixed costs such as maintenance, labor, and depreciation.
Key reference(s): ?

The process under analysis comprises three major sections: (1) Reaction; (2) Quench, wash, and compression; and (3) Purification.
Reaction. Fresh ethanol feed is combined with recycled ethanol recovered downstream then vaporized. The stream is superheated in a furnace and fed to the first reactor. During reaction, the temperature drops and the output stream must be re-heated before entering the next reactor. This is repeated until the fourth reactor, where ethanol reaches 99% of conversion.
Quench, wash, and compression. The reaction outlet stream primarily consists of Ethylene and water, with some unreacted ethanol and impurities. The stream is quenched to condense most of the water and ethanol, compressed, washed with water and a caustic soda solution to remove oxygenated impurities, then dried. The ethanol content of all effluents produced is recovered and recycled to the reactors.
Purification. Two distillation columns are employed for further purification of the Ethylene. The first column is a C2 splitter, responsible for the removal of undesired hydrocarbons. The second column is a CO stripper, removing carbon monoxide and remaining light impurities. The polymer grade ethylene (99.9 wt%) product is obtained in the bottoms of the stripper column.
Report in PDF Format
Download & Explore Anytime
Access in Various Devices
Print & Read Comfortably
Share With Co-workers
Up-to-date Report
Professional report based on Q3 2024 economic data, ensuring timely evaluations.
Multiple Use Cases
Ideal for investment screening, feasibility studies, cost estimates, and research planning.
Proven Methodology
Developed using a consistent methodology honed over a decade, ensuring reliable cost analyses.
Report Editions
Content Highlights
Plant Capital Cost Summary
Summary outlining the capital cost required for building the Ethylene production plant examined.
Plant Capital Cost Details
Detailing of fixed capital (ISBL, OSBL & Owner’s Cost), working capital and additional capital requirements.
Plant Cost Breakdowns
Breakdown of Ethylene process unit (ISBL) costs and infrastructure (OSBL) costs; plant cost breakdown per discipline.
Operating Costs Summary
Summary presenting the operating variable costs and the total operating cost of the Ethylene production plant studied.
Operating Cost Details
Detailing of utilities costs, operating fixed costs and depreciation.
Plant Capacity Assessment
Comparative analysis of capital investment and operating costs for different Ethylene plant capacities.
Production Process Information
Block Flow Diagram, descriptions of process unit (ISBL) and site infrastructure (OSBL).
Process Consumptions
Raw materials and utilities consumption figures, by-products credits, labor requirements
Process Diagrams
Process flow diagrams (PFD), equipment list and industrial site configuration
Other Ethylene Production Cost Reports

Ethylene Production from Ethane
This report presents the economics of Polymer Grade (PG) Ethylene production from ethane in the United States. In the process under analysis, ethane is thermally cracked in pyrolysis furnaces through the use of steam, yielding Ethylene. A hydrogen-rich gas is generated as by-product.
Details: 1200 kta United States-based plant | Q3 2024 | 107 pages | Issue B | From $799 USD

Ethylene Production from Ethane/Propane Mixture
This report presents the economics of Polymer Grade (PG) Ethylene production from ethane and propane in the United States. In the process under analysis, the mixture is submitted to a steam cracking process, yielding PG Ethylene. A hydrogen-rich gas and polymer grade propylene are generated as by-products,
Details: 1700 kta United States-based plant | Q3 2024 | 107 pages | Issue C | From $799 USD

Ethylene Production from Propane
This report presents the economics of Polymer Grade (PG) Ethlyene production from propane in the United States. In the study under analysis, propane is submitted through a steam cracking process, producing PG Ethylene. Pygas, a crude C4s stream, and PG propylene are generated as by-products.
Details: 1200 kta United States-based plant | Q3 2024 | 107 pages | Issue D | From $799 USD
Could Not Find the Report You Need?
Obtain a Bespoke Report
Get a report targeting the process in which you are interested
See Offer Details
Understand Bespoke Reports and how you can easily order them
Check Editions & Pricing
Complete a brief form and see a quotation for your Bespoke Report
Other Related Production Cost Reports

Ethanol and Sugar Production from Sugarcane
This report presents a techno-economic study of hydrous Ethanol and raw sugar production from sugarcane using a typical process in Brazil. In this process, part of the sugarcane juice is used in the production of raw sugar and part is fermented to produce hydrous Ethanol. The sugarcane bagasse is burned for electricity generation.
Details: 150 kta Brazil-based plant | Q3 2024 | 107 pages | Issue E | From $799 USD

Homopolymer HDPE from Ethylene (Similar to MarTECH Loop Slurry)
This report presents the economics of High Density Polyethylene (HDPE) production from polymer grade (PG) ethylene in the United States, using a slurry loop process similar to Chevron Phillips MarTECH and INEOS INNOVENE S. In this process, the monomers are polymerized in a single loop reactor.
Details: 450 kta United States-based plant | Q3 2024 | 107 pages | Issue F | From $799 USD

Propylene Production from Ethylene and Butenes
This report presents the economics of Polymer Grade (PG) Propylene production from ethylene and raffinate-2. The process under analysis consists in a metathesis process similar to Lummus Technology's Olefins Conversion Technology (OCT). The economic analysis performed assumes a plant located in the United States.
Details: 350 kta United States-based plant | Q3 2024 | 107 pages | Issue A | From $799 USD

Ethanol Production from Corn Dry Milling
This study presents the economics of hydrous Ethanol production from corn in the United States using a typical dry milling process. Initially, corn is ground, slurried with water and then submitted to enzymatic hydrolysis, which convert starch to glucose. Next, the glucose is fermented to Ethanol by yeasts, yielding Hydrous Ethanol.
Details: 300 kta United States-based plant | Q3 2024 | 107 pages | Issue C | From $799 USD
+800 Reports Developed, Targeting +250 Commodities
Vast Report Library
858 independent and up-to-date reports examining embryonic and established production processes.
Free Sample Reports
Quickly understand the structure and depth of content of our professional reports.